

DMFT at 25: Infinite Dimensions

Eva Pavarini, Erik Koch, Dieter Vollhardt and Alexander Lichtenstein (Eds.)

Forschungszentrum Jülich GmbH Institute for Advanced Simulation German Research School for Simulation Sciences GmbH

Lecture Notes of the Autumn School on Correlated Electrons 2014

Eva Pavarini, Erik Koch, Dieter Vollhardt and Alexander Lichtenstein (Eds.)

DMFT at 25: Infinite Dimensions

Autumn school organized by the DFG Research Unit 1346 Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials

at Forschungszentrum Jülich 15 – 19 September 2014

Schriften des Forschungszentrums Jülich Reihe Modeling and Simulation

Band / Volume 4

ISSN 2192-8525

ISBN 978-3-89336-953-9

Contents

Preface

- 1. From Gutzwiller Wave Functions to Dynamical Mean-Field Theory *Dieter Vollhardt*
- 2. Electronic Structure of Correlated Materials: Slave-Boson Methods and Dynamical Mean-Field Theory *Gabriel Kotliar*
- Dynamical Mean-Field Theory: Materials from an Atomic Viewpoint beyond the Landau Paradigm Antoine Georges
- 4. Development of the LDA+DMFT Approach *Alexander Lichtenstein*
- 5. Projectors, Hubbard U, Charge Self-Consistency, and Double-Counting *Tim Wehling*
- 6. Linear Response Functions *Eva Pavarini*
- 7. Continuous-time QMC Solvers for Electronic Systems in Fermionic and Bosonic Baths *Fakher Assaad*
- 8. Quantum Cluster Methods *Erik Koch*
- 9. Making Use of Self-Energy Functionals: The Variational Cluster Approximation *Michael Potthoff*
- 10. Dynamical Vertex Approximation Karsten Held
- Functional Renormalization Group Approach to Interacting Fermi Systems: DMFT as a Booster Rocket Walter Metzner
- 12. Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory Marcus Kollar
- 13. Theoretical Description of ARPES: The One-Step Model Ján Minár
- 14. Introduction to Photoemission Spectroscopy Michael Sing
- Challenges from Experiment: Correlation Effects and Electronic Dimer Formation in Ti₂O₃ Hao Tjeng

Index